Berry derived constituents in suppressing viral infection: Potential avenues for viral pandemic management

Published:September 28, 2021DOI:https://doi.org/10.1016/j.clnesp.2021.09.728

      Summary

      Berries are acknowledged as a rich source of major dietary antioxidants and the fact that berry phenolics exhibit antioxidant property is widely accepted. Berries are abundant in Vitamin C and polyphenols such as anthocyanins, flavonoids, and phenolic acids. Polyphenols are found to have several therapeutic effects such as anti-inflammatory, antioxidant, and antimicrobial properties. Increasing studies are focusing on natural products and their components for alternative therapeutics against viral infections. In particular, berries such as elderberry, blueberry, raspberry, and cranberry have proven to be effective against viral infections. Of note, the decoction of Honeysuckle (Lonicera japonica) has been shown to treat viral epidemic diseases. Owing to the rich source of various antiviral constituents, berries could be an alternative source for managing viral infections. In this review, we provide insights into how berry derived components inhibit viral infection and their clinical usefulness in viral disease management.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Clinical Nutrition ESPEN
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gramza-Michałowska A.
        • Sidor A.
        • Kulczyński B.
        Berries as a potential anti-influenza factor – a review.
        J Funct Foods. 2017 Oct; 37: 116-137
        • Ma L.
        • Sun Z.
        • Zeng Y.
        • Luo M.
        • Yang J.
        Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings.
        Int J Mol Sci. 2018 Sep 16; 19: 2785
        • Lee J.-H.
        • Oh M.
        • Seok J.
        • Kim S.
        • Lee D.
        • Bae G.
        • et al.
        Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection.
        Viruses. 2016 Jun 6; 8: 157
        • Zhou L.-K.
        • Zhou Z.
        • Jiang X.-M.
        • Zheng Y.
        • Chen X.
        • Fu Z.
        • et al.
        Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients.
        Cell Discov. 2020 Dec; 6: 54
        • Zhou Z.
        • Li X.
        • Liu J.
        • Dong L.
        • Chen Q.
        • Liu J.
        • et al.
        Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses.
        Cell Res. 2015 Jan; 25: 39-49
        • Lewis B.P.
        • Burge C.B.
        • Bartel D.P.
        Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets.
        Cell. 2005 Jan; 120: 15-20
        • Choy E.Y.-W.
        • Siu K.-L.
        • Kok K.-H.
        • Lung R.W.-M.
        • Tsang C.M.
        • To K.-F.
        • et al.
        An Epstein–Barr virus–encoded microRNA targets PUMA to promote host cell survival.
        J Exp Med. 2008 Oct 27; 205: 2551-2560
        • Lukasik A.
        • Zielenkiewicz P.
        Plant MicroRNAs—novel players in natural medicine?.
        Int J Mol Sci. 2016 Dec 22; 18: 9
        • Kinoshita E.
        • Hayashi K.
        • Katayama H.
        • Hayashi T.
        • Obata A.
        Anti-influenza virus effects of elderberry juice and its fractions.
        Biosci Biotechnol Biochem. 2012 Sep 23; 76: 1633-1638
        • de Pascual-Teresa S.
        • Santos-Buelga C.
        • Rivas-Gonzalo J.C.
        Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages.
        J Agric Food Chem. 2000 Nov; 48: 5331-5337
        • Roschek B.
        • Fink R.C.
        • McMichael M.D.
        • Li D.
        • Alberte R.S.
        Elderberry flavonoids bind to and prevent H1N1 infection in vitro.
        Phytochemistry. 2009 Jul; 70: 1255-1261
        • Nayak D.P.
        • Hui E.K.-W.
        • Barman S.
        Assembly and budding of influenza virus.
        Virus Res. 2004 Dec; 106: 147-165
        • Krawitz C.
        • Mraheil M.A.
        • Stein M.
        • Imirzalioglu C.
        • Domann E.
        • Pleschka S.
        • et al.
        Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses.
        BMC Compl Alternative Med. 2011 Dec; 11: 16
        • Porter R.S.
        • Bode R.F.
        A review of the antiviral properties of black elder (Sambucus nigra L.) products: antiviral properties of black elder (Sambucus nigra L.).
        Phytother Res. 2017 Apr; 31: 533-554
        • Steinhauer D.A.
        Role of hemagglutinin cleavage for the pathogenicity of influenza virus.
        Virology. 1999 May; 258: 1-20
        • Zakay-Rones Z.
        • Thom E.
        • Wollan T.
        • Wadstein J.
        Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections.
        J Int Med Res. 2004 Apr; 32: 132-140
        • Chen C.
        • Zuckerman D.M.
        • Brantley S.
        • Sharpe M.
        • Childress K.
        • Hoiczyk E.
        • et al.
        Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication.
        BMC Vet Res. 2014 Jan; 10: 24
        • Ikuta K.
        • Mizuta K.
        • Suzutani T.
        Anti-influenza virus activity of two extracts of the blackcurrant (Ribes nigrum L.) from New Zealand and Poland.
        Fukushima J Med Sci. 2013; 59: 35-38
        • Ikuta K.
        • Hashimoto K.
        • Kaneko H.
        • Mori S.
        • Ohashi K.
        • Suzutani T.
        Anti-viral and anti-bacterial activities of an extract of blackcurrants (Ribes nigrum L. ): anti-microbial activity of blackcurrants.
        Microbiol Immunol. 2012 Dec; 56: 805-809
        • Lim J.W.
        • Hwang H.J.
        • Shin C.S.
        Polyphenol compounds and anti-inflammatory activities of Korean black raspberry (Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed.
        J Agric Food Chem. 2012 May 23; 60: 5121-5127
        • Do S.H.
        • Lee J.-W.
        • Jeong W.-I.
        • Chung J.-Y.
        • Park S.-J.
        • Hong I.-H.
        • et al.
        Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts. vol. 8. 2008
        • Kim T.G.
        • Kang S.Y.
        • Jung K.K.
        • Kang J.H.
        • Lee E.
        • Han H.M.
        • et al.
        Antiviral activities of extracts isolated from Terminalis chebula retz.,Sanguisorba officinalis L.,Rubus coreanus miq. and Rheum palmatum L. against Hepatitis B virus.
        Phytother Res. 2001 Dec; 15: 718-720
        • Lindesmith L.
        • Moe C.
        • Marionneau S.
        • Ruvoen N.
        • Jiang X.
        • Lindblad L.
        • et al.
        Human susceptibility and resistance to Norwalk virus infection.
        Nat Med. 2003 May; 9: 548-553
        • Steinmann J.
        Surrogate viruses for testing virucidal efficacy of chemical disinfectants.
        J Hosp Infect. 2004 Apr; 56: 49-54
        • Wobus C.E.
        • Karst S.M.
        • Thackray L.B.
        • Chang K.-O.
        • Sosnovtsev S.V.
        • Belliot G.
        • et al.
        Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages.
        PLoS Biol. 2004 Nov 30; 2: e432
        • Wobus C.E.
        • Thackray L.B.
        • Virgin H.W.
        Murine norovirus: a model system to study norovirus biology and pathogenesis.
        J Virol. 2006 Jun 1; 80: 5104-5112
        • Oh M.
        • Bae S.Y.
        • Lee J.-H.
        • Cho K.J.
        • Kim K.H.
        • Chung M.S.
        Antiviral effects of black raspberry (Rubus coreanus) juice on foodborne viral surrogates.
        Foodb Pathog Dis. 2012 Oct; 9: 915-921
        • Lee J.-H.
        • Bae S.Y.
        • Oh M.
        • Seok J.H.
        • Kim S.
        • Chung Y.B.
        • et al.
        Antiviral effects of black raspberry (Rubus coreanus) seed extract and its polyphenolic compounds on norovirus surrogates.
        Biosci Biotechnol Biochem. 2016 Jun 2; 80: 1196-1204
        • Hall A.J.
        • Glass R.I.
        • Parashar U.D.
        New insights into the global burden of noroviruses and opportunities for prevention.
        Expert Rev Vaccines. 2016 Aug 2; 15: 949-951
        • Joshi S.S.
        • Howell A.B.
        • D'Souza D.H.
        Antiviral effects of blueberry proanthocyanidins against Aichi virus.
        Food Microbiol. 2019 Sep; 82: 202-208
        • Yamashita T.
        • Kobayashi S.
        • Sakac K.
        • Nakata S.
        • Chiba S.
        • Ishihara Y.
        • et al.
        Isolation of cytopathic small round viruses with BS-C-l cells from patients with gastroenteritis.
        J Infect Dis. 1991 Nov 1; 164: 954-957
        • Zafra-Stone S.
        • Yasmin T.
        • Bagchi M.
        • Chatterjee A.
        • Vinson J.A.
        • Bagchi D.
        Berry anthocyanins as novel antioxidants in human health and disease prevention.
        Mol Nutr Food Res. 2007 Jun; 51: 675-683
        • Fukuchi K.
        • Sakagami H.
        • Okuda T.
        • Hatano T.
        • Tanuma S.
        • Kitajima K.
        • et al.
        Inhibition of herpes simplex virus infection by tannins and related compounds.
        Antivir Res. 1989 Jun; 11: 285-297
        • Horm K.M.
        • Davidson P.M.
        • Harte F.M.
        • D'Souza D.H.
        Survival and inactivation of human norovirus surrogates in blueberry juice by high-pressure homogenization.
        Foodb Pathog Dis. 2012 Nov; 9: 974-979
        • Takeshita M.
        • Ishida Y.
        • Akamatsu E.
        • Ohmori Y.
        • Sudoh M.
        • Uto H.
        • et al.
        Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA.
        J Biol Chem. 2009 Aug 7; 284: 21165-21176
        • Joshi S.S.
        • Howell A.B.
        • D'Souza D.H.
        Reduction of enteric viruses by blueberry juice and blueberry proanthocyanidins.
        Food Environ Virol. 2016 Dec; 8: 235-243
        • Su X.
        • Howell A.B.
        • D'Souza D.H.
        The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates.
        Food Microbiol. 2010 Jun; 27: 535-540
        • Avorn J.
        • Monane M.
        • Gurwitz H.
        • Glynn R.J.
        • Choodnovskiy I.
        • Lipsitz L.A.
        Reduction of bacteriuria and pyuria after ingestion of cranberry juice.
        JAMA. 1994 Mar; 271: 751-754
        • Luganini A.
        • Terlizzi M.E.
        • Catucci G.
        • Gilardi G.
        • Maffei M.E.
        • Gribaudo G.
        The cranberry extract Oximacro® exerts in vitro virucidal activity against influenza virus by interfering with hemagglutinin.
        Front Microbiol. 2018 Aug 7; 9: 1826
        • Oiknine-Djian E.
        • Houri-Haddad Y.
        • Weiss E.
        • Ofek I.
        • Greenbaum E.
        • Hartshorn K.
        • et al.
        High molecular weight constituents of cranberry interfere with influenza virus neuraminidase activity in vitro.
        Planta Med. 2012 Jun; 78: 962-967
        • Lipson S.M.
        • Sethi L.
        • Cohen P.
        • Gordon R.E.
        • Tan I.P.
        • Burdowski A.
        • et al.
        Antiviral effects on bacteriophages and rotavirus by cranberry juice.
        Phytomedicine. 2007 Jan; 14: 23-30
        • Du X.
        • Wang J.
        • Niu X.
        • Smith D.
        • Wu D.
        • Meydani S.N.
        Dietary wolfberry supplementation enhances the protective effect of flu vaccine against influenza challenge in aged mice.
        J Nutr. 2014 Feb 1; 144: 224-229
        • Park S.
        • Kim J.I.
        • Lee I.
        • Lee S.
        • Hwang M.-W.
        • Bae J.-Y.
        • et al.
        Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses.
        Biochem Biophys Res Commun. 2013 Oct; 440: 14-19
        • Ren Z.
        • Na L.
        • Xu Y.
        • Rozati M.
        • Wang J.
        • Xu J.
        • et al.
        Dietary supplementation with lacto–wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice.
        J Nutr. 2012 Aug 1; 142: 1596-1602
        • Jurikova T.
        • Mlcek J.
        • Skrovankova S.
        • Sumczynski D.
        • Sochor J.
        • Hlavacova I.
        • et al.
        Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases.
        Molecules. 2017 Jun 7; 22: 944
        • Wang M.Y.
        • Srinivasan M.
        • Dasari S.
        • Narvekar P.
        • Samy A.L.P.A.
        • Dontaraju V.S.
        • et al.
        Antioxidant activity of Yichun blue honeysuckle (YBHS) berry counteracts CCl₄-Induced toxicity in liver injury model of mice.
        Antioxidants. 2017 Jun 30; 6: 50
        • Huang Y.
        • Liu H.
        • Sun X.
        • Ding M.
        • Tao G.
        • Li X.
        Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene.
        J Neurovirol. 2019 Aug; 25: 457-463
        • Li X.
        • Huang Y.
        • Sun M.
        • Ji H.
        • Dou H.
        • Hu J.
        • et al.
        Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene.
        Antivir Res. 2018 Apr; 152: 117-123
        • Han X.
        • Shen T.
        • Lou H.
        Dietary polyphenols and their biological significance.
        Int J Mol Sci. 2007 Sep 12; 8: 950-988
        • Alesawt M.S.
        • Abdallah A.E.
        • Taghour M.S.
        • Elkaeed E.B.
        • H Eissa I.
        • Metwaly A.M.
        In silico analysis of some isoflavanoids as potential candidate against COVID-19 targeting human ACE (hACE2) and viral main protease (M9pro).
        Molecules. 2021 May; 26: 2806
        • Trott O.
        • Olson A.J.
        AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
        J Comput Chem. 2010 Jan; 31: 455-461