The clinical effects of a carbohydrate-reduced high-protein diet on glycaemic variability in metformin-treated patients with type 2 diabetes mellitus: A randomised controlled study

      Summary

      Background & aims

      High glycaemic variability (GV) is associated with late complications in type 2 diabetes (T2D). We hypothesised that a carbohydrate-reduced high-protein (CRHP) diet would reduce GV acutely in patients with T2D compared with a conventional diabetes (CD) diet.

      Methods

      In this controlled, randomised crossover study, 16 patients with metformin-treated T2D (median (IQR) age: 64.0 (58.8–68.0) years; HbA1c: 47 (43–57) mmol/mol; duration of T2D: 5.5 (2.8–10.3) years) were assigned to an energy-matched CRHP diet and CD diet (31E%/54E% carbohydrate, 29E%/16E% protein and 40E%/30E% fat, respectively) for two separate 48-h intervention periods. Interstitial continuous glucose monitoring (CGM) was performed to assess accepted measures of glycaemic variability, i.e. standard deviation (SD) around the sensor glucose level; coefficient of variation in percent (CV); mean amplitude of glucose excursions (MAGE); continuous overlapping net glycaemic action (CONGA1, CONGA4) of observations 1 and 4 h apart; and mean absolute glucose (MAG) change.

      Results

      All indices of glycaemic variability (mean ± SD) were significantly reduced during CRHP diet compared with CD diet; including SD (1.0 ± 0.3 (CRHP) vs 1.6 ± 0.5 mmol/L (CD)), CV (12.3 ± 3.8 vs 19.3 ± 5.5%), MAGE (2.3 ± 0.9 vs 4.2 ± 1.3 mmol/L), CONGA1 (0.8 ± 0.3 vs 1.5 ± 0.4 mmol/L), CONGA4 (1.4 ± 0.5 vs 2.5 ± 0.8 mmol/L), and MAG change (0.9 ± 0.3 vs 1.4 ± 0.4 mmol/L/h) (p < 0.001 for all). Compared with the CD diet, the CRHP diet improved the diurnal glucose profile by reducing 24-h mean sensor glucose (7.7 ± 1.6 vs 8.6 ± 2.0 mmol/L).

      Conclusions

      In T2D patients treated with diet and metformin, two days of iso-energetic replacement of dietary carbohydrates by protein and fat reduced all indices of glycaemic variability by 36%–45% when compared with a conventional diabetes diet. These data may support reduction of carbohydrates as dietary advice for T2D patients.

      Clinicaltrials.gov identifier

      Keywords

      To read this article in full you will need to make a payment

      References

        • UK Prospective Diabetes Study (UKPDS) Group
        Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
        Lancet. 1998 Sep 12; 352: 837-853
        • Selvin E.
        • Marinopoulos S.
        • Berkenblit G.
        • Rami T.
        • Brancati F.L.
        • Powe N.R.
        • et al.
        Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus.
        Ann Intern Med. 2004 Sep 21; 141: 421-431
        • Bonora E.
        • Corrao G.
        • Bagnardi V.
        • Ceriello A.
        • Comaschi M.
        • Montanari P.
        • et al.
        Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus.
        Diabetologia. 2006 May; 49: 846-854
        • Monnier L.
        • Lapinski H.
        • Colette C.
        Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c).
        Diabetes Care. 2003 Mar; 26: 881-885
        • Cavalot F.
        • Petrelli A.
        • Traversa M.
        • Bonomo K.
        • Fiora E.
        • Conti M.
        • et al.
        Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study.
        J Clin Endocrinol Metab. 2006 Mar; 91: 813-819
        • Hanefeld M.
        • Fischer S.
        • Julius U.
        • Schulze J.
        • Schwanebeck U.
        • Schmechel H.
        • et al.
        Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up.
        Diabetologia. 1996 Dec; 39: 1577-1583
        • Tay J.
        • Thompson C.H.
        • Brinkworth G.D.
        Glycemic variability: assessing glycemia differently and the implications for dietary management of diabetes.
        Annu Rev Nutr. 2015; 35: 389-424
        • Nalysnyk L.
        • Hernandez-Medina M.
        • Krishnarajah G.
        Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature.
        Diabetes Obes Metab. 2010 Apr; 12: 288-298
        • Madsbad S.
        Impact of postprandial glucose control on diabetes-related complications: how is the evidence evolving?.
        J Diabetes Complications. 2016 Mar; 30: 374-385
        • American Diabetes A
        4. Lifestyle management: standards of medical care in diabetes-2018.
        Diabetes care. 2018 Jan; 41: S38-S50
        • Ajala O.
        • English P.
        • Pinkney J.
        Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes.
        Am J Clin Nutr. 2013 Mar; 97: 505-516
        • Huntriss R.
        • Campbell M.
        • Bedwell C.
        The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials.
        Eur J Clin Nutr. 2018 Mar; 72: 311-325
        • Nuttall F.Q.
        • Almokayyad R.M.
        • Gannon M.C.
        Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes.
        Metabolism. 2015 Feb; 64: 253-262
        • Nuttall F.Q.
        • Schweim K.
        • Hoover H.
        • Gannon M.C.
        Effect of the LoBAG30 diet on blood glucose control in people with type 2 diabetes.
        Br J Nutr. 2008 Mar; 99: 511-519
        • American Diabetes A
        7. Diabetes technology: standards of medical care in diabetes-2020.
        Diabetes care. 2020 Jan; 43: S77-S88
        • Battelino T.
        • Danne T.
        • Bergenstal R.M.
        • Amiel S.A.
        • Beck R.
        • Biester T.
        • et al.
        Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range.
        Diabetes Care. 2019 Aug; 42: 1593-1603
        • Lu J.
        • Ma X.
        • Zhou J.
        • Zhang L.
        • Mo Y.
        • Ying L.
        • et al.
        Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes.
        Diabetes Care. 2018 Nov; 41: 2370-2376
        • Rodbard D.
        Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control.
        Diabetes Technol Therapeut. 2009 Jun; 11: S55-S67
        • Samkani A.
        • Skytte M.J.
        • Kandel D.
        • Kjaer S.
        • Astrup A.
        • Deacon C.F.
        • et al.
        A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients.
        Br J Nutr. 2018 Apr; 119: 910-917
        • American Diabetes A
        2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018.
        Diabetes Care. 2018 Jan; 41: S13-S27
        • Nordic Nutrition Recommendations 2012
        Nordic Nutrition Recommendations NNR 2012 - intergrating nutrition and physical activity.
        Nord. 2014; 2012 (002): 2004
        • Terada T.
        • Loehr S.
        • Guigard E.
        • McCargar L.J.
        • Bell G.J.
        • Senior P.
        • et al.
        Test-retest reliability of a continuous glucose monitoring system in individuals with type 2 diabetes.
        Diabetes Technol Therapeut. 2014 Aug; 16: 491-498
        • Bailey T.S.
        • Ahmann A.
        • Brazg R.
        • Christiansen M.
        • Garg S.
        • Watkins E.
        • et al.
        Accuracy and acceptability of the 6-day Enlite continuous subcutaneous glucose sensor.
        Diabetes Technol Ther. 2014 May; 16: 277-283
        • Bernstein R.
        • Parkes J.L.
        • Goldy A.
        • Brown D.
        • Harrison B.
        • Chu A.
        • et al.
        A new test strip technology platform for self-monitoring of blood glucose.
        J Diabetes Sci Technol. 2013 Sep 1; 7: 1386-1399
        • American Diabetes A
        6. Glycemic targets: standards of medical care in diabetes-2018.
        Diabetes care. 2018 Jan; 41: S55-S64
        • International Diabetes Federation Guideline Development
        Guideline for management of postmeal glucose in diabetes.
        Diabetes Res Clin Pract. 2014 Feb; 103: 256-268
        • Service F.J.
        • Molnar G.D.
        • Rosevear J.W.
        • Ackerman E.
        • Gatewood L.C.
        • Taylor W.F.
        Mean amplitude of glycemic excursions, a measure of diabetic instability.
        Diabetes. 1970 Sep; 19: 644-655
        • Baghurst P.A.
        Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: an automated algorithm.
        Diabetes Technol Ther. 2011 Mar; 13: 296-302
        • Fritzsche G.
        • Kohnert K.D.
        • Heinke P.
        • Vogt L.
        • Salzsieder E.
        The use of a computer program to calculate the mean amplitude of glycemic excursions.
        Diabetes Technol Ther. 2011 Mar; 13: 319-325
        • McDonnell C.M.
        • Donath S.M.
        • Vidmar S.I.
        • Werther G.A.
        • Cameron F.J.
        A novel approach to continuous glucose analysis utilizing glycemic variation.
        Diabetes Technol Ther. 2005 Apr; 7: 253-263
        • Kohnert K.D.
        • Heinke P.
        • Fritzsche G.
        • Vogt L.
        • Augstein P.
        • Salzsieder E.
        Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data.
        Diabetes Technol Ther. 2013 Jun; 15: 448-454
        • Molnar G.D.
        • Taylor W.F.
        • Ho M.M.
        Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability.
        Diabetologia. 1972 Nov; 8: 342-348
        • Nathan D.M.
        • Kuenen J.
        • Borg R.
        • Zheng H.
        • Schoenfeld D.
        • Heine R.J.
        • et al.
        Translating the A1C assay into estimated average glucose values.
        Diabetes Care. 2008 Aug; 31: 1473-1478
        • Cavalot F.
        Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes.
        Diabetes Obes Metab. 2013 Sep; 15: 3-8
        • Ceriello A.
        The glucose triad and its role in comprehensive glycaemic control: current status, future management.
        Int J Clin Pract. 2010 Nov; 64: 1705-1711
        • Kohnert K.D.
        • Augstein P.
        • Heinke P.
        • Zander E.
        • Peterson K.
        • Freyse E.J.
        • et al.
        Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes.
        Diabetes Res Clin Pract. 2007 Sep; 77: 420-426
        • Mori Y.
        • Ohta T.
        • Shiozaki M.
        • Yokoyama J.
        • Utsunomiya K.
        The effect of a low-carbohydrate/high-monounsaturated fatty acid liquid diet and an isoleucine-containing liquid diet on 24-h glycemic variability in diabetes patients on tube feeding: a comparison by continuous glucose monitoring.
        Diabetes Technol Ther. 2012 Jul; 14: 619-623
        • Tay J.
        • Luscombe-Marsh N.D.
        • Thompson C.H.
        • Noakes M.
        • Buckley J.D.
        • Wittert G.A.
        • et al.
        A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial.
        Diabetes Care. 2014 Nov; 37: 2909-2918
        • Tay J.
        • Thompson C.H.
        • Luscombe-Marsh N.D.
        • Wycherley T.P.
        • Noakes M.
        • Buckley J.D.
        • et al.
        Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: a 2-year randomized clinical trial.
        Diabetes Obes Metab. 2018 Apr; 20: 858-871
        • Siegelaar S.E.
        • Holleman F.
        • Hoekstra J.B.
        • DeVries J.H.
        Glucose variability; does it matter?.
        Endocr Rev. 2010 Apr; 31: 171-182
        • Service F.J.
        Glucose variability.
        Diabetes. 2013 May; 62: 1398-1404
        • DeVries J.H.
        Glucose variability: where it is important and how to measure it.
        Diabetes. 2013 May; 62: 1405-1408
        • Rodbard D.
        Clinical interpretation of indices of quality of glycemic control and glycemic variability.
        Postgrad Med. 2011 Jul; 123: 107-118
        • Danne T.
        • Nimri R.
        • Battelino T.
        • Bergenstal R.M.
        • Close K.L.
        • DeVries J.H.
        • et al.
        International consensus on use of continuous glucose monitoring.
        Diabetes Care. 2017 Dec; 40: 1631-1640
        • Monnier L.
        • Colette C.
        • Boegner C.
        • Pham T.C.
        • Lapinski H.
        • Boniface H.
        Continuous glucose monitoring in patients with type 2 diabetes: why? When? Whom?.
        Diabetes Metab. 2007 Sep; 33: 247-252
        • Cameron F.J.
        • Donath S.M.
        • Baghurst P.A.
        Measuring glycaemic variation.
        Curr Diabetes Rev. 2010 Jan; 6: 17-26
        • Monnier L.
        • Colette C.
        Glycemic variability: can we bridge the divide between controversies?.
        Diabetes Care. 2011 Apr; 34: 1058-1059
        • Zhou J.
        • Jia W.
        • Bao Y.
        • Ma X.
        • Lu W.
        • Li H.
        • et al.
        Glycemic variability and its responses to intensive insulin treatment in newly diagnosed type 2 diabetes.
        Med Sci Monit. 2008 Nov; 14: CR552-CR558
        • Xu F.
        • Zhao L.H.
        • Su J.B.
        • Chen T.
        • Wang X.Q.
        • Chen J.F.
        • et al.
        The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c.
        Diabetol Metab Syndrome. 2014; 6: 139
        • Ohara M.
        • Fukui T.
        • Ouchi M.
        • Watanabe K.
        • Suzuki T.
        • Yamamoto S.
        • et al.
        Relationship between daily and day-to-day glycemic variability and increased oxidative stress in type 2 diabetes.
        Diabetes Res Clin Pract. 2016 Dec; 122: 62-70