Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial

Published:January 21, 2020DOI:https://doi.org/10.1016/j.clnesp.2020.01.005

      Summary

      Objective

      The aim of this study was to evaluate the effect of curcumin on body weight, glycemic control and serum lipids in women suffering from polycystic ovary syndrome (PCOS).

      Methods

      The current randomized, double-blinded, placebo-controlled clinical trial was performed on 60 subjects with PCOS, aged 18–40 years old. Subjects were randomly allocated to take 500 mg/day curcumin (n = 30) or placebo (n = 30) for 12 weeks. Glycemic control and serum lipids were measured at baseline and after the 12-week intervention. Using RT-PCR method, gene expression related to insulin and lipid metabolism was evaluated.

      Results

      Curcumin significantly decreased weight (−0.8 ± 0.9 vs. −0.2 ± 0.8 kg, P = 0.03) and BMI (−0.3 ± 0.4 vs. −0.1 ± 0.3 kg/m2, P = 0.03). Curcumin, compared with the placebo, significantly reduced fasting glucose (β −2.63 mg/dL; 95% CI, −4.21, −1.05; P = 0.002), serum insulin (β −1.16 μIU/mL; 95% CI, −2.12, −0.19; P = 0.02), insulin resistance (β −0.26; 95% CI, −0.48, −0.03; P = 0.02), and significantly increased insulin sensitivity (β 0.006; 95% CI, 0.001, 0.01; P = 0.02). In addition, taking curcumin was associated with a significant reduction in total cholesterol (β −15.86 mg/dL; 95% CI, −24.48, −7.24; P = 0.001), LDL-cholesterol (β −16.09 mg/dL; 95% CI, −25.11, −7.06; P = 0.001) and total-/HDL-cholesterol ratio (β −0.62; 95% CI, −0.93, −0.30; P < 0.001), and a significant increase in HDL-cholesterol levels (β 2.14 mg/dL; 95% CI, 0.36, 3.92; P = 0.01) compared with the placebo. Additionally, curcumin administration up-regulated gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) (P = 0.03) and low-density lipoprotein receptor (LDLR) (P < 0.001) compared with the placebo.

      Conclusions

      Overall, curcumin administration for 12 weeks to women with PCOS had beneficial effects on body weight, glycemic control, serum lipids except triglycerides and VLDL-cholesterol levels, and gene expression of PPAR-γ and LDLR. Registered under Clinical Trials.gov Identifier no. http://www.irct.ir: IRCT20170513033941N50.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Bozdag G.
        • Mumusoglu S.
        • Zengin D.
        • Karabulut E.
        • Yildiz B.O.
        The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis.
        Hum Reprod (Oxf, Engl). 2016; 31: 2841-2855
        • DeUgarte C.M.
        • Bartolucci A.A.
        • Azziz R.
        Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment.
        Fertil Steril. 2005; 83: 1454-1460
        • Norman R.J.
        • Masters L.
        • Milner C.R.
        • Wang J.X.
        • Davies M.J.
        Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome.
        Hum Reprod (Oxf, Engl). 2001; 16: 1995-1998
        • Krentz A.J.
        • von Muhlen D.
        • Barrett-Connor E.
        Searching for polycystic ovary syndrome in postmenopausal women: evidence of a dose-effect association with prevalent cardiovascular disease.
        Menopause (New York, NY). 2007; 14: 284-292
        • Legro R.S.
        • Kunselman A.R.
        • Dunaif A.
        Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome.
        Am J Med. 2001; 111: 607-613
        • Cussons A.J.
        • Stuckey B.G.
        • Watts G.F.
        Cardiovascular disease in the polycystic ovary syndrome: new insights and perspectives.
        Atherosclerosis. 2006; 185: 227-239
        • Faubert J.
        • Battista M.-C.
        • Baillargeon J.-P.
        Physiology and endocrinology symposium: insulin action and lipotoxicity in the development of polycystic ovary syndrome: a review 1.
        J Anim Sci. 2016; 94: 1803-1811
        • Ong M.
        • Peng J.
        • Jin X.
        • Qu X.
        Chinese herbal medicine for the optimal management of polycystic ovary syndrome.
        Am J Chin Med. 2017; 45: 405-422
        • Kunnumakkara A.B.
        • Bordoloi D.
        • Padmavathi G.
        • Monisha J.
        • Roy N.K.
        • Prasad S.
        • et al.
        Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases.
        Br J Pharmacol. 2017; 174: 1325-1348
        • Shin S.K.
        • Ha T.Y.
        • McGregor R.A.
        • Choi M.S.
        Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism.
        Mol Nutr Food Res. 2011; 55: 1829-1840
        • Mohammadi A.
        • Sahebkar A.
        • Iranshahi M.
        • Amini M.
        • Khojasteh R.
        • Ghayour-Mobarhan M.
        • et al.
        Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial.
        Phytother Res – PTR. 2013; 27: 374-379
        • Chuengsamarn S.
        • Rattanamongkolgul S.
        • Luechapudiporn R.
        • Phisalaphong C.
        • Jirawatnotai S.
        Curcumin extract for prevention of type 2 diabetes.
        Diabetes Care. 2012; 35: 2121-2127
        • Baum L.
        • Cheung S.K.
        • Mok V.C.
        • Lam L.C.
        • Leung V.P.
        • Hui E.
        • et al.
        Curcumin effects on blood lipid profile in a 6-month human study.
        Pharmacol Res. 2007; 56: 509-514
        • Alwi I.
        • Santoso T.
        • Suyono S.
        • Sutrisna B.
        • Suyatna F.D.
        • Kresno S.B.
        • et al.
        The effect of curcumin on lipid level in patients with acute coronary syndrome.
        Acta Med Indones. 2008; 40: 201-210
        • Murugan P.
        • Pari L.
        • Rao C.A.
        Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes.
        J Biosci. 2008; 33: 63-72
        • Song Z.
        • Wang H.
        • Zhu L.
        • Han M.
        • Gao Y.
        • Du Y.
        • et al.
        Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling.
        Food Funct. 2015; 6: 461-469
        • Arun N.
        • Nalini N.
        Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats.
        Plant Foods Hum Nutr (Dordrecht, Netherlands). 2002; 57: 41-52
        • Seo K.I.
        • Choi M.S.
        • Jung U.J.
        • Kim H.J.
        • Yeo J.
        • Jeon S.M.
        • et al.
        Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.
        Mol Nutr Food Res. 2008; 52: 995-1004
        • Panahi Y.
        • Ahmadi Y.
        • Teymouri M.
        • Johnston T.P.
        • Sahebkar A.
        Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms.
        J Cell Physiol. 2018; 233: 141-152
      1. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome.
        Fertil Steril. 2004; 81: 19-25
        • Pisprasert V.
        • Ingram K.H.
        • Lopez-Davila M.F.
        • Munoz A.J.
        • Garvey W.T.
        Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans.
        Diabetes Care. 2013; 36: 845-853
        • Na L.X.
        • Li Y.
        • Pan H.Z.
        • Zhou X.L.
        • Sun D.J.
        • Meng M.
        • et al.
        Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial.
        Mol Nutr Food Res. 2013; 57: 1569-1577
        • Lim S.S.
        • Davies M.J.
        • Norman R.J.
        • Moran L.J.
        Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis.
        Hum Reprod Update. 2012; 18: 618-637
        • Di Pierro F.
        • Bressan A.
        • Ranaldi D.
        • Rapacioli G.
        • Giacomelli L.
        • Bertuccioli A.
        Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study.
        Eur Rev Med Pharmacol Sci. 2015; 19: 4195-4202
        • Yang Y.S.
        • Su Y.F.
        • Yang H.W.
        • Lee Y.H.
        • Chou J.I.
        • Ueng K.C.
        Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial.
        Phytother Res – PTR. 2014; 28: 1770-1777
        • Moghetti P.
        Insulin resistance and polycystic ovary syndrome.
        Curr Pharm Des. 2016; 22: 5526-5534
        • Morales A.J.
        • Laughlin G.A.
        • Butzow T.
        • Maheshwari H.
        • Baumann G.
        • Yen S.S.
        Insulin, somatotropic, and luteinizing hormone axes in lean and obese women with polycystic ovary syndrome: common and distinct features.
        J Clin Endocrinol Metabol. 1996; 81: 2854-2864
        • Jin T.
        • Song Z.
        • Weng J.
        • Fantus I.G.
        Curcumin and other dietary polyphenols: potential mechanisms of metabolic actions and therapy for diabetes and obesity.
        Am J Physiol Endocrinol Metabol. 2018; 314: E201-E205
        • Huang J.
        • Qin S.
        • Huang L.
        • Tang Y.
        • Ren H.
        • Hu H.
        Efficacy and safety of Rhizoma curcumea longae with respect to improving the glucose metabolism of patients at risk for cardiovascular disease: a meta-analysis of randomised controlled trials.
        2019
        • Tabrizi R.
        • Vakili S.
        • Lankarani K.B.
        • Akbari M.
        • Mirhosseini N.
        • Ghayour-Mobarhan M.
        • et al.
        The effects of curcumin on glycemic control and lipid profiles among patients with metabolic syndrome and related disorders: a systematic review and metaanalysis of randomized controlled trials.
        Curr Pharmaceut Des. 2018; 24: 3184-3199
        • Poolsup N.
        • Suksomboon N.
        Effects of curcumin on glycemic control and lipid profile in prediabetes and type 2 diabetes mellitus: a systematic review and meta-analysis.
        . 2019; 14e0215840
        • Sahebkar A.
        A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels.
        Clin Nutr (Edinb Scotl). 2014; 33: 406-414
        • Jazayeri-Tehrani S.A.
        • Rezayat S.M.
        • Mansouri S.
        • Qorbani M.
        • Alavian S.M.
        • Daneshi-Maskooni M.
        • et al.
        Nano-curcumin improves glucose indices, lipids, inflammation, and Nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): a double-blind randomized placebo-controlled clinical trial.
        Nutr Metabol. 2019; 16: 8
        • Qin S.
        • Huang L.
        • Gong J.
        • Shen S.
        • Huang J.
        • Ren H.
        • et al.
        Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials.
        Nutr J. 2017; 16: 68
        • Jimenez-Flores L.M.
        • Lopez-Briones S.
        • Macias-Cervantes M.H.
        • Ramirez-Emiliano J.
        • Perez-Vazquez V.
        A PPARgamma, NF-kappaB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver.
        Molecules (Basel, Switz). 2014; 19: 8289-8302
        • Chen R.
        • Peng X.
        • Du W.
        • Wu Y.
        • Huang B.
        • Xue L.
        • et al.
        Curcumin attenuates cardiomyocyte hypertrophy induced by high glucose and insulin via the PPARgamma/Akt/NO signaling pathway.
        Diabetes Res Clin Pract. 2015; 108: 235-242
        • Ghorbani Z.
        • Hekmatdoost A.
        • Mirmiran P.
        Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin.
        Int J Endocrinol Metabol. 2014; 12e18081
        • Janani C.
        • Ranjitha Kumari B.D.
        PPAR gamma gene--a review.
        Diabetes Metab Syndrome. 2015; 9: 46-50
        • Sahebkar A.
        Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome?.
        BioFactors (Oxford, Engl). 2013; 39: 197-208
        • Simental-Mendia L.E.
        • Pirro M.
        Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials.
        . 2019; 59: 1178-1187
        • Musunuru K.
        Atherogenic dyslipidemia: cardiovascular risk and dietary intervention.
        Lipids. 2010; 45: 907-914
        • Padala S.
        • Thompson P.D.
        Statins as a possible cause of inflammatory and necrotizing myopathies.
        Atherosclerosis. 2012; 222: 15-21
        • Jimenez-Osorio A.S.
        • Monroy A.
        • Alavez S.
        Curcumin and insulin resistance-Molecular targets and clinical evidences.
        BioFactors (Oxf, Engl). 2016; 42: 561-580
        • Fan C.
        • Wo X.
        • Qian Y.
        • Yin J.
        • Gao L.
        Effect of curcumin on the expression of LDL receptor in mouse macrophages.
        J Ethnopharmacol. 2006; 105: 251-254
        • Kang Q.
        • Chen A.
        Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells.
        Br J Pharmacol. 2009; 157: 1354-1367
        • Liu Y.
        • Hong X.Q.
        [Effect of three different curcumin pigmens on the prdiferation of vascular smooth muscle cells by ox-LDL and the expression of LDL-R].
        Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006; 31: 500-503
        • Dou X.
        • Fan C.
        • Wo L.
        • Yan J.
        • Qian Y.
        • Wo X.
        Curcumin up-regulates LDL receptor expression via the sterol regulatory element pathway in HepG2 cells.
        Planta Med. 2008; 74: 1374-1379