The extra-splanchnic fructose escape after ingestion of a fructose–glucose drink: An exploratory study in healthy humans using a dual fructose isotope method

Published:November 15, 2018DOI:https://doi.org/10.1016/j.clnesp.2018.11.008

      Summary

      Background & aims

      The presence of specific fructose transporters and fructose metabolizing enzymes has now been demonstrated in the skeletal muscle, brain, heart, adipose tissue and many other tissues. This suggests that fructose may be directly metabolized and play physiological or pathophysiological roles in extra-splanchnic tissues. Yet, the proportion of ingested fructose reaching the systemic circulation is generally not measured. This study aimed to assess the amount of oral fructose escaping first-pass splanchnic extraction after ingestion of a fructose-glucose drink using a dual oral-intravenous fructose isotope method.

      Methods

      Nine healthy volunteers were studied over 2 h before and 4 h after ingestion of a drink containing 30.4 ± 1.0 g of glucose (mean ± SEM) and 30.4 ± 1.0 g of fructose labelled with 1% [U-13C6]-fructose. A 75%-unlabeled fructose and 25%-[6,6-2H2]-fructose solution was continuously infused (100 μg kg−1 min−1) over the 6 h period. Total systemic, oral and endogenous fructose fluxes were calculated from plasma fructose concentrations and isotopic enrichments. The fraction of fructose escaping first-pass splanchnic extraction was calculated assuming a complete intestinal absorption of the fructose drink.

      Results

      Fasting plasma fructose concentration before tracer infusion was 17.9 ± 0.6 μmol.L−1. Fasting endogenous fructose production detected by tracer dilution analysis was 55.3 ± 3.8 μg kg−1min−1. Over the 4 h post drink ingestion, 4.4 ± 0.2 g of ingested fructose (i.e. 14.5 ± 0.8%) escaped first-pass splanchnic extraction and reached the systemic circulation. Endogenous fructose production significantly increased to a maximum of 165.4 ± 10.7 μg kg−1·min−1 60 min after drink ingestion (p < 0.001).

      Conclusions

      These data indicate that a non-negligible fraction of fructose is able to escape splanchnic extraction and circulate in the periphery. The metabolic effects of direct fructose metabolism in extra-splanchnic tissues, and their relationship with metabolic diseases, remain to be evaluated. Our results also open new research perspectives regarding the physiological role of endogenous fructose production.

      Graphical abstract

      Keywords

      Abbreviations:

      Finfusion (fructose infusion), FRatot (total rate of fructose appearance), FRaoral (rate of oral fructose appearance), EFP (endogenous fructose production), AUC (area under the curve), NOFD (non-oxidative fructose disposal), MPE (mol percent excess), APE (atom percent excess)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Clinical Nutrition ESPEN
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bray G.A.
        • Nielsen S.J.
        • Popkin B.M.
        Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.
        Am J Clin Nutr. 2004; 79: 537-543
        • Tappy L.
        • Lê K.-A.
        Metabolic effects of fructose and the worldwide increase in obesity.
        Physiol Rev. 2010; 90: 23-46
        • Stanhope K.L.
        Sugar consumption, metabolic disease and obesity: the state of the controversy.
        Crit Rev Clin Lab Sci. 2016; 53: 52-67
        • Moulin S.
        • Seematter G.
        • Seyssel K.
        Fructose use in clinical nutrition: metabolic effects and potential consequences.
        Curr Opin Clin Nutr Metab Care. 2017; 20: 272-278
        • Tappy L.
        Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders.
        J Exp Biol. 2018; 221
        • Hannou S.A.
        • Haslam D.E.
        • McKeown N.M.
        • Herman M.A.
        Fructose metabolism and metabolic disease.
        J Clin Invest. 2018; 128: 545-555
        • Jensen T.
        • Abdelmalek M.F.
        • Sullivan S.
        • Nadeau K.J.
        • Green M.
        • Roncal C.
        • et al.
        Fructose and sugar: a major mediator of non-alcoholic fatty liver disease.
        J Hepatol. 2018; 68: 1063-1075
        • Theytaz F.
        • de Giorgi S.
        • Hodson L.
        • Stefanoni N.
        • Rey V.
        • Schneiter P.
        • et al.
        Metabolic fate of fructose ingested with and without glucose in a mixed meal.
        Nutrients. 2014; 6: 2632-2649
        • Rosset R.
        • Lecoultre V.
        • Egli L.
        • Cros J.
        • Rey V.
        • Stefanoni N.
        • et al.
        Endurance training with or without glucose-fructose ingestion: effects on lactate metabolism assessed in a randomized clinical trial on sedentary men.
        Nutrients. 2017; 9
        • Jegatheesan P.
        • De Bandt J.-P.
        Fructose and NAFLD: the multifaceted aspects of fructose metabolism.
        Nutrients. 2017; 9
        • Tappy L.
        Fructose metabolism and noncommunicable diseases: recent findings and new research perspectives.
        Curr Opin Clin Nutr Metab Care. 2018; 21: 214-222
        • Ishimoto T.
        • Lanaspa M.A.
        • Le M.T.
        • Garcia G.E.
        • Diggle C.P.
        • Maclean P.S.
        • et al.
        Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice.
        Proc Natl Acad Sci USA. 2012; 109: 4320-4325
        • Lanaspa M.A.
        • Ishimoto T.
        • Cicerchi C.
        • Tamura Y.
        • Roncal-Jimenez C.A.
        • Chen W.
        • et al.
        Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
        J Am Soc Nephrol. 2014; 25: 2526-2538
        • Mirtschink P.
        • Krishnan J.
        • Grimm F.
        • Sarre A.
        • Hörl M.
        • Kayikci M.
        • et al.
        HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.
        Nature. 2015; 522: 444-449
        • Varma V.
        • Boros L.G.
        • Nolen G.T.
        • Chang C.-W.
        • Wabitsch M.
        • Beger R.D.
        • et al.
        Metabolic fate of fructose in human adipocytes: a targeted (13)C tracer fate association study.
        Metabolomics. 2015; 11: 529-544
        • Jastreboff A.M.
        • Sinha R.
        • Arora J.
        • Giannini C.
        • Kubat J.
        • Malik S.
        • et al.
        Altered brain response to drinking glucose and fructose in obese adolescents.
        Diabetes. 2016; 65: 1929-1939
        • Laughlin M.R.
        • Bantle J.P.
        • Havel P.J.
        • Parks E.
        • Klurfeld D.M.
        • Teff K.
        • et al.
        Clinical research strategies for fructose metabolism.
        Adv Nutr. 2014; 5: 248-259
        • Frayn K.N.
        Calculation of substrate oxidation rates in vivo from gaseous exchange.
        J Appl Physiol. 1983; 55: 628-634
        • Petersen K.F.
        • Laurent D.
        • Yu C.
        • Cline G.W.
        • Shulman G.I.
        Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans.
        Diabetes. 2001; 50: 1263-1268
        • Lecoultre V.
        • Benoit R.
        • Carrel G.
        • Schutz Y.
        • Millet G.P.
        • Tappy L.
        • et al.
        Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose.
        Am J Clin Nutr. 2010; 92: 1071-1079
        • Debodo R.C.
        • Steele R.
        • Altszuler N.
        • Dunn A.
        • Bishop J.S.
        On the hormonal regulation of carbohydrate metabolism; studies with C14 glucose.
        Recent Prog Horm Res. 1963; 19: 445-488
        • Proietto J.
        • Rohner-Jeanrenaud F.
        • Ionescu E.
        • Terrettaz J.
        • Sauter J.F.
        • Jeanrenaud B.
        Non-steady-state measurement of glucose turnover in rats by using a one-compartment model.
        Am J Physiol. 1987; 252: E77-E84
        • Schneiter P.
        • Tappy L.
        Kinetics of dexamethasone-induced alterations of glucose metabolism in healthy humans.
        Am J Physiol. 1998; 275: E806-E813
        • Skoog S.M.
        • Bharucha A.E.
        Dietary fructose and gastrointestinal symptoms: a review.
        Am J Gastroenterol. 2004; 99: 2046-2050
        • Rumessen J.J.
        • Gudmand-Høyer E.
        Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides.
        Gut. 1986; 27: 1161-1168
        • Ferrannini E.
        • Bjorkman O.
        • Reichard G.A.
        • Pilo A.
        • Olsson M.
        • Wahren J.
        • et al.
        The disposal of an oral glucose load in healthy subjects: a quantitative study.
        Diabetes. 1985; 34: 580-588
        • Mari A.
        • Wahren J.
        • DeFronzo R.A.
        • Ferrannini E.
        Glucose absorption and production following oral glucose: comparison of compartmental and arteriovenous-difference methods.
        Metabolism. 1994; 43: 1419-1425
        • Shiota M.
        • Moore M.C.
        • Galassetti P.
        • Monohan M.
        • Neal D.W.
        • Shulman G.I.
        • et al.
        Inclusion of low amounts of fructose with an intraduodenal glucose load markedly reduces postprandial hyperglycemia and hyperinsulinemia in the conscious dog.
        Diabetes. 2002; 51: 469-478
        • Björkman O.
        • Felig P.
        Role of the kidney in the metabolism of fructose in 60-hour fasted humans.
        Diabetes. 1982; 31: 516-520
        • Wolfe B.M.
        • Ahuja S.P.
        • Marliss E.B.
        Effects of intravenously administered fructose and glucose on splanchnic amino acid and carbohydrate metabolism in hypertriglyceridemic men.
        J Clin Invest. 1975; 56: 970-977
        • Topping D.L.
        • Mayes P.A.
        The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose.
        Nutr Metab. 1971; 13: 331-338
        • Shiota M.
        • Galassetti P.
        • Monohan M.
        • Neal D.W.
        • Cherrington A.D.
        Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog.
        Diabetes. 1998; 47: 867-873
        • Hooper R.H.
        • Short A.H.
        The hepatocellular uptake of glucose, galactose and fructose in conscious sheep.
        J Physiol (Lond). 1977; 264: 523-539
        • Jang C.
        • Hui S.
        • Lu W.
        • Cowan A.J.
        • Morscher R.J.
        • Lee G.
        • et al.
        The small intestine converts dietary fructose into glucose and organic acids.
        Cell Metab. 2018; 27 (351–361.e3)
        • Brundin T.
        • Wahren J.
        Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose.
        Am J Physiol. 1993; 264: E504-E513
        • Kawasaki T.
        • Akanuma H.
        • Yamanouchi T.
        Increased fructose concentrations in blood and urine in patients with diabetes.
        Diabetes Care. 2002; 25: 353-357
        • Lanaspa M.A.
        • Ishimoto T.
        • Li N.
        • Cicerchi C.
        • Orlicky D.J.
        • Ruzycki P.
        • et al.
        Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome.
        Nat Commun. 2013; 4: 2434
        • Hwang J.J.
        • Jiang L.
        • Hamza M.
        • Dai F.
        • Belfort-DeAguiar R.
        • Cline G.
        • et al.
        The human brain produces fructose from glucose.
        JCI Insight. 2017; 2e90508
        • Park T.J.
        • Reznick J.
        • Peterson B.L.
        • Blass G.
        • Omerbašić D.
        • Bennett N.C.
        • et al.
        Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat.
        Science. 2017; 356: 307-311
        • Lanaspa M.A.
        • Andres-Hernando A.
        • Orlicky D.J.
        • Cicerchi C.
        • Jang C.
        • Li N.
        • et al.
        Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice.
        J Clin Invest. 2018; 128: 2226-2238
        • Lorenzi M.
        The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient.
        Exp Diabetes Res. 2007; 2007: 61038
        • Roncal Jimenez C.A.
        • Ishimoto T.
        • Lanaspa M.A.
        • Rivard C.J.
        • Nakagawa T.
        • Ejaz A.A.
        • et al.
        Fructokinase activity mediates dehydration-induced renal injury.
        Kidney Int. 2014; 86: 294-302
        • Doke T.
        • Ishimoto T.
        • Hayasaki T.
        • Ikeda S.
        • Hasebe M.
        • Hirayama A.
        • et al.
        Lacking ketohexokinase-A exacerbates renal injury in streptozotocin-induced diabetic mice.
        Metab Clin Exp. 2018; 85: 161-170
        • Sullivan J.S.
        • Le M.T.
        • Pan Z.
        • Rivard C.
        • Love-Osborne K.
        • Robbins K.
        • et al.
        Oral fructose absorption in obese children with non-alcoholic fatty liver disease.
        Pediatr Obes. 2015; 10: 188-195
        • Tran C.
        • Jacot-Descombes D.
        • Lecoultre V.
        • Fielding B.A.
        • Carrel G.
        • Lê K.-A.
        • et al.
        Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load.
        Br J Nutr. 2010; 104: 1139-1147